Fisher Scoring dan IRLS untuk GLM dengan variabel respon biner

GLM
R Programming
Computational Statistics
Author

Gerry Alfa Dito

Published

September 10, 2023

Package

library(tidyverse)
library(Matrix)
library(broom)

Fisher Scoring untuk GLM

Formula Fisher Scoring yang digunakan untuk mendapatkan penduga bagi koefisien GLM adalah sebagai berikut:

\[ \boldsymbol{\beta}_{(p+1) \times 1}^{(i+1)}=\boldsymbol{\beta}_{(p+1) \times 1}^{(i)} + \left[\boldsymbol{\mathcal{I}}_{p \times p }^{(i)} \right]^{-1} \boldsymbol{S}_{(p+1) \times 1}^{(i)} \]

dengan

\[ \boldsymbol{S}_{(p+1) \times 1}^{(i)}= \boldsymbol{X}^{t}_{ (p+1) \times n} \boldsymbol{W}_{n \times n} ^{(i)} (\boldsymbol{D}_{n \times n}^{(i)})^{-1} (\boldsymbol{y}_{n \times 1}-\boldsymbol{\mu}_{n \times 1}^{(i)}) \] dan

\[ \boldsymbol{\mathcal{I}}_{p \times p }^{(i)}=\boldsymbol{X}^{t}_{ (p+1) \times n} \boldsymbol{W}_{n \times n} ^{(i)} \boldsymbol{X}_{n \times (p+1)} \]

Algoritme Fisher Scoring dapat dituliskan sebagai berikut:

  1. Tentukan perkiraan awal nilai optimal \(\boldsymbol{\beta}_{(p+1) \times 1}^{(0)}\) dan stopping criterion
  2. Tentukan Score function \(\boldsymbol{S}_{(p+1) \times 1}^{(0)}\) dan Expected Fisher Information \(\boldsymbol{\mathcal{I}}_{p \times p }^{(0)}\).
  3. Hitung \(\boldsymbol{\beta}_{(p+1) \times 1}^{(1)}=\boldsymbol{\beta}_{(p+1) \times 1}^{(0)} + \left[\boldsymbol{\mathcal{I}}_{p \times p }^{(0)} \right]^{-1} \boldsymbol{S}_{(p+1) \times 1}^{(0)}\), sehingga diperoleh perkiraan nilai optimal \(\boldsymbol{\beta}_{(p+1) \times 1}^{(1)}\)
  4. Lakukan Langkah 5 sampai stopping criterion terpenuhi
  5. Hitung \(\boldsymbol{\beta}_{(p+1) \times 1}^{(i+1)}=\boldsymbol{\beta}_{(p+1) \times 1}^{(i)} + \left[\boldsymbol{\mathcal{I}}_{p \times p }^{(i)} \right]^{-1} \boldsymbol{S}_{(p+1) \times 1}^{(i)}\) untuk iterasi \(i=1,2,\ldots\)
  6. Saat stopping criterion terpenuhi maka \(\boldsymbol{\beta}_{(p+1) \times 1}^{(i+1)}\) merupakan nilai penduga bagi parameter \(\boldsymbol{\beta}_{(p+1) \times 1}\)
  7. Ragam dari \(\boldsymbol{\beta}_{(p+1) \times 1}\) diperoleh dengan $Var(_{(p+1)})=^{-1} $saat stopping criterion terpenuhi

Iteratively reweighted least squares (IRLS) untuk GLM

IRLS untuk GLM merupakan hasil reformulasi dari Fisher Scoring untuk GLM. Berikut proses penurunanya

\[ \begin{aligned} \boldsymbol{\beta}_{(p+1)Γ—1}^{(𝑖+1)} &= \boldsymbol{\beta}_{((𝑝+1)Γ—1)}^{(i)}+[\boldsymbol{\mathcal{I}}_{p\times p}^{(i)} ]^{βˆ’1} \boldsymbol{S}_{(𝑝+1)Γ—1}^{(i)} \\ \boldsymbol{\mathcal{I}}_{p\times p}^{(i)} \boldsymbol{\beta}_{(𝑝+1)Γ—1}^{(𝑖+1)} &= \boldsymbol{\mathcal{I}}_{p\times p}^{(i)} \boldsymbol{\beta}_{((𝑝+1)Γ—1)}^{(i)}+ \boldsymbol{S}_{(𝑝+1)Γ—1}^{(i)} \end{aligned} \]

kemudiann dengan mensubtitusikan \(\boldsymbol{\mathcal{I}}_{p\times p}^{(i)}\) dan \(\boldsymbol{S}_{(𝑝+1)Γ—1}^{(i)}\) sesuai dengan definisi yang ada di fisher scoring, didapat

\[ \begin{aligned} \left\{ \boldsymbol{X}_{(𝑝+1) \times n }^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{X}_{n \times (𝑝+1)} \right\} \boldsymbol{\beta}_{(p+1)Γ—1}^{(𝑖+1)} &= \left\{ \boldsymbol{X}_{(𝑝+1) \times n}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{X}_{n \times (𝑝+1)} \right\} \boldsymbol{\beta}_{((𝑝+1)Γ—1)}^{(i)}+ \left[ \boldsymbol{X}_{(𝑝+1) \times n}^{t} \boldsymbol{W}_{n \times n}^{(i)} (\boldsymbol{D}_{n \times n}^{^{(i)}})^{-1} (\boldsymbol{y}_{n \times 1}βˆ’\boldsymbol{\mu}_{𝑛×1}^{(i)}) \right] \\ &= \boldsymbol{X}_{(𝑝+1) \times n}^{t} \boldsymbol{W}_{n \times n}^{(i)} \left[\boldsymbol{X}_{(𝑝+1) \times n}^{t}\boldsymbol{\beta}_{((𝑝+1)Γ—1)}^{(i)} + (\boldsymbol{D}_{n \times n}^{^{(i)}})^{-1} (\boldsymbol{y}_{n \times 1}βˆ’\boldsymbol{\mu}_{𝑛×1}^{(i)}) \right] \\ &\text{ misal } \boldsymbol{z}_{n \times1}=\boldsymbol{X}_{(𝑝+1) \times n}^{t}\boldsymbol{\beta}_{((𝑝+1)Γ—1)}^{(i)} + (\boldsymbol{D}_{n \times n}^{^{(i)}})^{-1} (\boldsymbol{y}_{n \times 1}βˆ’\boldsymbol{\mu}_{𝑛×1}^{(i)}) \\ &=\boldsymbol{X}_{(p+1) \times n}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{z}_{n \times1}^{(i)} \end{aligned} \]

maka diperoleh persamaan normal (normal equation) sebagai berikut:

\[ \begin{aligned} \left\{ \boldsymbol{X}_{(𝑝+1) \times n }^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{X}_{n \times (𝑝+1)} \right\} \boldsymbol{\beta}_{(p+1)Γ—1}^{(𝑖+1)} &= \boldsymbol{X}_{ (p+1) \times n}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{z}_{n \times1}^{(i)} \\ \boldsymbol{\beta}_{(p+1)Γ—1}^{(𝑖+1)} &= \left\{ \boldsymbol{X}_{ (p+1) \times n}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{X}_{n \times (𝑝+1)} \right\}^{-1} \boldsymbol{X}_{ (p+1) \times n}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{z}_{n \times1}^{(i)} \end{aligned} \]

Kemudian, solusi dari persamaan normal diatas adalah

\[ \boldsymbol{\beta}_{(p+1)Γ—1}^{(𝑖+1)} = \left\{ \boldsymbol{X}_{(𝑝+1) \times n }^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{X}_{n \times (𝑝+1)} \right\}^{-1} \boldsymbol{X}_{(𝑝+1) \times n}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{z}_{n \times1}^{(i)} \]

jadi, formulasi untuk IRLS adalah

\[ \boldsymbol{\beta}_{(p+1)Γ—1}^{(𝑖+1)} = \left\{ \boldsymbol{X}_{n \times (𝑝+1)}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{X}_{n \times (𝑝+1)} \right\}^{-1} \boldsymbol{X}_{n \times (p+1)}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{z}_{n \times1}^{(i)} \]

Algoritme Fisher Scoring dapat dituliskan sebagai berikut:

  1. Tentukan perkiraan awal nilai optimal \(\boldsymbol{\beta}_{(p+1) \times 1}^{(0)}\) dan stopping criterion
  2. Tentukan \(\boldsymbol{W}_{n \times n}^{(0)}\) dan \(\boldsymbol{z}_{n \times1}^{(0)}\).
  3. Hitung \(\boldsymbol{\beta}_{(p+1)Γ—1}^{(1)} = \left\{ \boldsymbol{X}_{n \times (𝑝+1)}^{t} \boldsymbol{W}_{n \times n}^{(0)} \boldsymbol{X}_{n \times (𝑝+1)} \right\}^{-1} \boldsymbol{X}_{n \times (p+1)}^{t} \boldsymbol{W}_{n \times n}^{(0)} \boldsymbol{z}_{n \times1}^{(0)}\), sehingga diperoleh perkiraan nilai optimal \(\boldsymbol{\beta}_{(p+1) \times 1}^{(1)}\)
  4. Lakukan Langkah 5 sampai stopping criterion terpenuhi
  5. Hitung \(\boldsymbol{\beta}_{(p+1)Γ—1}^{(𝑖+1)} = \left\{ \boldsymbol{X}_{n \times (𝑝+1)}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{X}_{n \times (𝑝+1)} \right\}^{-1} \boldsymbol{X}_{n \times (p+1)}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{z}_{n \times1}^{(i)}\) untuk iterasi \(i=1,2,\ldots\)
  6. Saat stopping criterion terpenuhi maka \(\boldsymbol{\beta}_{(p+1) \times 1}^{(i+1)}\) merupakan nilai penduga bagi parameter \(\boldsymbol{\beta}_{(p+1) \times 1}\)
  7. Ragam dari \(\boldsymbol{\beta}_{(p+1) \times 1}\) diperoleh dengan \(Var(\boldsymbol{\beta}_{(p+1)})=\left\{ \boldsymbol{X}_{n \times (𝑝+1)}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{X}_{n \times (𝑝+1)} \right\}^{-1}\)saat stopping criterion terpenuhi

Data

No Variabel Keterangan
1 age umur nasabah(numeric)
2 job jenis pekerjaan nasabah(categorical:"admin.","unknown","unemployed","management","housemaid","entrepreneur","student","blue-collar","self-employed","retired","technician","services")
3 marital status perkawinan nasabah (categorical: "married","divorced","single")
4 education tingkat pendidikan(categorical: "unknown","secondary","primary","tertiary")
5 default apakah nasabah memiliki kredit yang macet? (binary: "yes","no")
6 balance saldo tahunan rata-rata dalam euros (numeric)
7 housing apakah nasabah memiliki cicilan rumah? (binary: "yes","no")
8 loan apakah nasabah memiliki pinjaman pribadi? (binary: "yes","no")
9 contact perangkat telekomunikasi (categorical: "unknown","telephone","cellular")
10 duration durasi panggilan terakhir, dalam detik (numeric)
11 pdays banyaknya hari yang telah berlalu setelah klien terakhir kali dihubungi dari campaign sebelumnya (angka, -1 berarti klien tidak dihubungi sebelumnya)
12 previous banyaknya komunikasi yang dilakukan sebelum campaign ini(numeric)
13 poutcome hasil dari promosi campaign sebelumnya (categorical: "unknown","other","failure","success")
14 subscribed response variable (desired target),apakah nasabah telah berlangganan deposito berjangka? (binary: "yes","no")

Data bisa didownload di link berikut

Download Data

Import Data

bank_marketing <- read.csv("bank_marketing.csv",stringsAsFactors = TRUE)
glimpse(bank_marketing)
Rows: 45,211
Columns: 14
$ subscribed <fct> no, no, no, no, no, no, no, no, no, no, no, no, no, no, no,…
$ age        <int> 58, 44, 33, 47, 33, 35, 28, 42, 58, 43, 41, 29, 53, 58, 57,…
$ job        <fct> management, technician, entrepreneur, blue-collar, unknown,…
$ marital    <fct> married, single, married, married, single, married, single,…
$ education  <fct> tertiary, secondary, secondary, unknown, unknown, tertiary,…
$ default    <fct> no, no, no, no, no, no, no, yes, no, no, no, no, no, no, no…
$ balance    <int> 2143, 29, 2, 1506, 1, 231, 447, 2, 121, 593, 270, 390, 6, 7…
$ housing    <fct> yes, yes, yes, yes, no, yes, yes, yes, yes, yes, yes, yes, …
$ loan       <fct> no, no, yes, no, no, no, yes, no, no, no, no, no, no, no, n…
$ contact    <fct> unknown, unknown, unknown, unknown, unknown, unknown, unkno…
$ duration   <int> 261, 151, 76, 92, 198, 139, 217, 380, 50, 55, 222, 137, 517…
$ pdays      <int> -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,…
$ previous   <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,…
$ poutcome   <fct> unknown, unknown, unknown, unknown, unknown, unknown, unkno…

Fisher Scoring dan IRLS untuk Binomial GLM

Misal Binomial GLM didefinisikan sebagai

\[ \boldsymbol{\pi} = \frac{\exp{( \boldsymbol{X}\boldsymbol{\beta} )}}{1+\exp{( \boldsymbol{X}\boldsymbol{\beta} )}} \] atau

\[ \text{logit}(\boldsymbol{\pi}) = \log{ \left( \frac{\boldsymbol{\pi}}{1-\boldsymbol{\pi}} \right)}= \boldsymbol{X}\boldsymbol{\beta} \] dengan

\[ \boldsymbol{\pi}=P(\boldsymbol{y}=1) \]

Untuk ilustrasi penggunaan Fisher-scoring dan IRLS kita akan menggunakan variabel prediktor balance, age, housing dan marital

set.seed(2045)
bank_marketing_mini <-  bank_marketing %>% 
                            select(subscribed,balance,age,housing,marital) %>% 
                            slice_sample(n=250,by = subscribed)
glimpse(bank_marketing_mini)
Rows: 500
Columns: 5
$ subscribed <fct> no, no, no, no, no, no, no, no, no, no, no, no, no, no, no,…
$ balance    <int> 354, 5838, 39, -123, 1150, 263, -11, 1733, 14, 416, 2, 0, 4…
$ age        <int> 29, 56, 55, 35, 33, 40, 51, 33, 50, 34, 26, 27, 32, 23, 45,…
$ housing    <fct> yes, no, no, yes, yes, yes, no, yes, yes, no, yes, yes, yes…
$ marital    <fct> single, married, married, single, single, single, married, …

Kemudian kita akan ekstrak matriks modelnya \(\boldsymbol{X}_{n \times (p+1)}\)

X <- model.matrix(subscribed~balance+age+housing+marital,data = bank_marketing_mini)
#dimensi matrix X
dim(X)
[1] 500   6

dan kemudian untuk \(\boldsymbol{y}_{n\times 1}\), kita misalkan kategori yes sebagai 1 dan 0 adalah untuk kategori no

y <- ifelse(bank_marketing_mini$subscribed=="yes",1,0)
# ukuran variabel respon
length(y)
[1] 500
# banyaknya nilai 1 dan 0
table(y)
y
  0   1 
250 250 

berikut overview dari matriks \(\boldsymbol{X}_{n \times (p+1)}\)

X[1:10,]
   (Intercept) balance age housingyes maritalmarried maritalsingle
1            1     354  29          1              0             1
2            1    5838  56          0              1             0
3            1      39  55          0              1             0
4            1    -123  35          1              0             1
5            1    1150  33          1              0             1
6            1     263  40          1              0             1
7            1     -11  51          0              1             0
8            1    1733  33          1              0             1
9            1      14  50          1              1             0
10           1     416  34          0              0             1

Binomial sebagai distribusi keluarga eksponensial

Selanjutnya kita akan mendefinisikan matriks-matriks lain yang dibutuhkan untuk fisher scoring dan IRLS. Pertama-tama kita ingat terlebih dahulu tentang distribusi binomail sebagai distribusi keluarga eksponensial.

Distribusi Binomial yang digunakan untuk GLM adalah \(Y \sim\frac{\text{Binomial}(m,\pi)}{m}\). Ingat bahwa, Cumulant function \(b(\theta)\) untuk \(Y \sim\frac{\text{Binomial}(m,\pi)}{m}\) adalah

\[ b(\theta) = \log{[1 + \exp{(\theta})]} \]

dan parameter dispersi \(a(\phi)\)

\[ a(\phi)=\frac{1}{m} \]

Kemudian, \(\mu\) dan \(Var(Y)\) dari \(Y\frac{\text{Binomial}(m,\pi)}{m}\) sebagai keluarga eksponensial adalah

\[ \begin{aligned} \mu=E(Y) &= \frac{d b(\theta)}{d\theta} \\ &=\frac{\exp{(\theta)}}{1+\exp{(\theta)}} \end{aligned} \]

dan

$$

Var(Y) &= Var() a()
&= a()
&=

$$

Ingat bahwa koneksi (pemisalan) \(\theta\) dengan parameter \(\pi\) adalah sebagai berikut

\[ \theta = \log{ \left( \frac{\pi}{1-\pi} \right)} \]

Jika kita subtitusi ke dalam \(\mu\) dan \(Var(Y)\)

\[ \begin{aligned} \mu &= \frac{\exp{(\theta)}}{1+\exp{(\theta)}} \\ &= \frac{ \left( \frac{\pi}{1-\pi} \right) }{1 + \left( \frac{\pi}{1-\pi} \right)} \\ &= \pi \end{aligned} \]

\[ \begin{aligned} Var(Y) &= \frac{\exp{(\theta)}}{[1+\exp{(\theta)}]^{2}} \frac{1}{m} \\ &= \frac{ \left( \frac{\pi}{1-\pi} \right) }{ \left[1 + \left( \frac{\pi}{1-\pi} \right) \right]^{2}} \frac{1}{m} \\ &= \pi (1-\pi) \frac{1}{m} \\ &= \frac{\pi (1-\pi)}{m} \end{aligned} \]

jadi \(\mu=\pi\) dan \(Var(Y)=\frac{\pi (1-\pi)}{m}\). Kemudian, fungsi hubung (link function) yang digunakan adalah fungsi hubung kanonik (canonical link function) yaitu

\[ \eta=\text{logit}(\mu)=\text{logit}(\pi)=\log{\left( \frac{\pi}{1-\pi} \right)} \]

jika kita ubah menjadi fungsi dari \(\eta\)

\[ g^{-1}(\eta)=\mu=\pi = \frac{\exp{(\eta)}}{1+\exp{(\eta)}} \]

Mendefiniskan matriks untuk Fisher Scoring dan IRLS

Kemudian kita akan dapatkan matriks \(\boldsymbol{W}_{n \times n}\) yang didefinisikan

\[ \boldsymbol{W}_{n \times n} = \begin{bmatrix} \frac{\left(\frac{d \mu_{1}}{d\eta_{1}} \right)^{2}}{Var(y_{1})} & 0 & \ldots & 0 \\ 0 & \frac{\left(\frac{d \mu_{2}}{d\eta_{2}} \right)^{2}}{Var(y_{2})} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \frac{\left(\frac{d \mu_{n}}{d\eta_{2}} \right)^{2}}{Var(y_{n})} \end{bmatrix} \]

elemen-elemen diagonalnya sebagai berikut:

\[ \begin{aligned} \frac{d \mu_{i}}{d\eta_{i}} =\frac{d \pi_{i}}{d\eta_{i}} &= \frac{d \left( \frac{\exp{(\eta_i)}}{1+\exp{(\eta_i)}} \right)}{d\eta_{i}} \\ &= \frac{\exp{(\eta_i)}}{[1+\exp{(\eta_i)}]^{2}} \\ &= \frac{ \left( \frac{\pi_i}{1-\pi_i} \right) }{ \left[1 + \left( \frac{\pi_i}{1-\pi_i} \right) \right]^{2}}\\ &= \pi_i (1-\pi_i) \end{aligned} \]

dan

\[ Var(y_{i})= \frac{\pi_i (1-\pi_i)}{m_i} \]

sehingga

\[ \frac{\left(\frac{d \mu_{i}}{d\eta_{i}} \right)^{2}}{Var(y_{i})} = \frac{[\pi_i (1-\pi_i)]^{2}}{\frac{\pi_i (1-\pi_i)}{m_i}} = m_i\pi_i (1-\pi_i) \]

Jadi matriks \(\boldsymbol{W}_{n \times n}\) adalah

\[ \boldsymbol{W}_{n \times n}= \begin{bmatrix} m_{1}\pi_1 (1-\pi_1) & 0 & \ldots & 0 \\ 0 & m_{2}\pi_2 (1-\pi_2) & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & m_{n}\pi_n (1-\pi_n) \end{bmatrix} \]

kita tuliskan matriks \(\boldsymbol{W}_{n \times n}\) dalam sintaks R

W <- function(m,pi){
wi <- m * pi * ( 1- pi )
Diagonal(x=as.numeric(wi))
}

misalkan \(m_1=m_2=m_3=1\) dan \(\pi_{1}=0.5,\pi_{2}=0.6,\pi_{3}=0.7\) maka \(\boldsymbol{W}_{n \times n}\) adalah

W(m=c(1,1,1),pi=c(0.5,0.6,0.7))
3 x 3 diagonal matrix of class "ddiMatrix"
     [,1] [,2] [,3]
[1,] 0.25    .    .
[2,]    . 0.24    .
[3,]    .    . 0.21

Selanjutnya kita akan dapatkan matriks \(D_{n \times n}\) yang didefinisikan

\[ \boldsymbol{D}_{n \times n} = \begin{bmatrix} \frac{d \mu_{1}}{d\eta_{1}} & 0 & \ldots & 0 \\ 0 & \frac{d \mu_{2}}{d\eta_{2}} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \frac{d \mu_{n}}{d\eta_{n}} \end{bmatrix} \]

elemen-elemen diagonalnya sebagai berikut:

\[ \begin{aligned} \frac{d \mu_{i}}{d\eta_{i}} =\frac{d \pi_{i}}{d\eta_{i}} &= \frac{d \left( \frac{\exp{(\eta_i)}}{1+\exp{(\eta_i)}} \right)}{d\eta_{i}} \\ &= \frac{\exp{(\eta_i)}}{[1+\exp{(\eta_i)}]^{2}} \\ &= \frac{ \left( \frac{\pi_i}{1-\pi_i} \right) }{ \left[1 + \left( \frac{\pi_i}{1-\pi_i} \right) \right]^{2}}\\ &= \pi_i (1-\pi_i) \end{aligned} \]

Jadi matriks \(\boldsymbol{D}_{n \times n}\) adalah

\[ \boldsymbol{D}_{n \times n}= \begin{bmatrix} \pi_1 (1-\pi_1) & 0 & \ldots & 0 \\ 0 & \pi_2 (1-\pi_2) & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \pi_n (1-\pi_n) \end{bmatrix} \]

kita tuliskan matriks \(\boldsymbol{D}_{n \times n}\) dalam sintaks R

D <- function(pi){
di <- pi * ( 1- pi )
Diagonal(x=as.numeric(di))
}

misalkan \(\pi_{1}=0.5,\pi_{2}=0.6,\pi_{3}=0.7\) maka \(\boldsymbol{D}_{n \times n}\) adalah

D(pi=c(0.5,0.6,0.7))
3 x 3 diagonal matrix of class "ddiMatrix"
     [,1] [,2] [,3]
[1,] 0.25    .    .
[2,]    . 0.24    .
[3,]    .    . 0.21

Selanjutnya kita akan dapatkan matriks \(\boldsymbol{\mu}_{n \times 1}\) yang didefinisikan

\[ \boldsymbol{\mu}_{n \times 1}=g^{-1}(\boldsymbol{X}\boldsymbol{\beta})=\frac{\exp{(\boldsymbol{X}_{n \times (p+1)}\boldsymbol{\beta}_{(p+1)})}}{1+\exp{(\boldsymbol{X}_{n \times (p+1)}\boldsymbol{\beta}_{(p+1)})}} \]

mu <- function(X,beta){
  exp(X %*% beta) / ( 1+exp( X%*% beta) )
}

misalkan \(\boldsymbol{X}_{n \times (p+1)}\) berasal dari data bank_marketing_mini dan \(\boldsymbol{\beta}_{(p+1)}=[0.230 0.001 \space 0.002 \space -0.769 \space -0.166 \space 0.109]^{t}\) maka \(\boldsymbol{\mu}_{n \times 1}\) adalah

# memeriksa dimensi
dim( mu(X=X,beta = c(0.230,0.001,0.002,-0.769,-0.166,0.109) ) )
[1] 500   1
# menampilkan 10 elemen pertama
mu(X=X,beta = c(0.230,0.001,0.002,-0.769,-0.166,0.109) )[1:10]
 [1] 0.4955001 0.9975617 0.5530496 0.3815440 0.6869718 0.4782637 0.5386726
 [8] 0.7972185 0.3564054 0.6948728

Fisher Scoring

matriks \(\boldsymbol{S}_{(p+1) \times 1}\) adalah

\[ \boldsymbol{S}_{(p+1) \times 1}= \boldsymbol{X}^{t}_{ (p+1) \times n} \boldsymbol{W}_{n \times n} (\boldsymbol{D}_{n \times n})^{-1} (\boldsymbol{y}_{n \times 1}-\boldsymbol{\mu}_{n \times 1}) \]

kita tuliskan matriks \(\boldsymbol{S}_{(p+1) \times 1}\) dalam sintaks R

S <- function(X,W,D,y,mu){
  inv_D <- chol2inv(chol(D))
 crossprod( X, W %*% inv_D %*% (y-mu) )
}

misalkan \(\boldsymbol{W}_{n \times n} ,\boldsymbol{D}_{n \times n}\) dan \(\boldsymbol{\mu}_{n \times 1}\) adalah sebagai berikut:

set.seed(2045)

W_coba <- W(m = 1,pi = rep(0.5,nrow(X)))
dim(W_coba)
[1] 500 500
W_coba[1:5,1:5]
5 x 5 diagonal matrix of class "ddiMatrix"
     [,1] [,2] [,3] [,4] [,5]
[1,] 0.25    .    .    .    .
[2,]    . 0.25    .    .    .
[3,]    .    . 0.25    .    .
[4,]    .    .    . 0.25    .
[5,]    .    .    .    . 0.25
D_coba <- D(pi = rep(0.5,nrow(X)))
dim(D_coba)
[1] 500 500
D_coba[1:5,1:5]
5 x 5 diagonal matrix of class "ddiMatrix"
     [,1] [,2] [,3] [,4] [,5]
[1,] 0.25    .    .    .    .
[2,]    . 0.25    .    .    .
[3,]    .    . 0.25    .    .
[4,]    .    .    . 0.25    .
[5,]    .    .    .    . 0.25
mu_coba <- as.matrix( runif(n = nrow(X),min = 0,max = 1 ) )
dim(mu_coba)
[1] 500   1
head(mu_coba)
           [,1]
[1,] 0.77550659
[2,] 0.94264755
[3,] 0.47241345
[4,] 0.08665263
[5,] 0.63646300
[6,] 0.42453500
S(X = X,W = W_coba,D = D_coba,y = y,mu = mu_coba)
6 x 1 Matrix of class "dgeMatrix"
                      [,1]
(Intercept)       -5.12588
balance        64379.67806
age             -132.00826
housingyes       -27.00537
maritalmarried    -9.45959
maritalsingle      5.37219

matriks \(\boldsymbol{\mathcal{I}}_{p \times p}\) adalah

\[ \boldsymbol{\mathcal{I}}_{p \times p }=\boldsymbol{X}_{ (p+1) \times n} \boldsymbol{W}_{n \times n} \boldsymbol{X}_{n \times (p+1)} \]

kita tuliskan matriks \(\boldsymbol{\mathcal{I}}_{p \times p }\) dalam sintaks R

I_fs <- function(X,W){
 crossprod(X,W %*% X)
}
set.seed(2045)

W_coba <- W(m = 1,pi = rep(0.5,nrow(X)))
dim(W_coba)
[1] 500 500
W_coba[1:5,1:5]
5 x 5 diagonal matrix of class "ddiMatrix"
     [,1] [,2] [,3] [,4] [,5]
[1,] 0.25    .    .    .    .
[2,]    . 0.25    .    .    .
[3,]    .    . 0.25    .    .
[4,]    .    .    . 0.25    .
[5,]    .    .    .    . 0.25
I_fs(X = X,W = W_coba)[1:5,1:5]
5 x 5 Matrix of class "dgeMatrix"
               (Intercept)      balance        age housingyes maritalmarried
(Intercept)          125.0 1.901442e+05    5160.00      58.00          68.50
balance           190144.2 1.821748e+09 8400186.75   59549.75      101843.00
age                 5160.0 8.400187e+06  230156.50    2279.50        3062.25
housingyes            58.0 5.954975e+04    2279.50      58.00          31.00
maritalmarried        68.5 1.018430e+05    3062.25      31.00          68.50

Supaya lebih mudah, kita kumpulkan semua definisi matriks yang sudah dituliskan ke program R dibawah ini

W <- function(m,pi){
wi <- m * pi * ( 1- pi )
Diagonal(x=as.numeric(wi))
}
D <- function(pi){
di <- pi * ( 1- pi )
Diagonal(x=as.numeric(di))
}
mu <- function(X,beta){
  exp(X %*% beta) / ( 1+exp( X%*% beta) )
}
S <- function(X,W,D,y,mu){
  inv_D <- chol2inv(chol(D))
 crossprod( X, W %*% inv_D %*% (y-mu) )
}
I_fs <- function(X,W){
 crossprod(X,W %*% X)
}

Selanjutnya kita akan mulai menuliskan program R untuk iterasi fisher scoring

stop_criterion <- function(beta_old,beta_new,tol) {
  error <- as.matrix(abs(beta_new-beta_old))
  status <- all(error  < tol)
  return(list(error=as.data.frame(t(error)),status=status))
}
stop_criterion(beta_old = c(0.5,-0.9),beta_new = c(0.51,-0.91),tol = 1e-5)
$error
    V1   V2
1 0.01 0.01

$status
[1] FALSE
stop_criterion(beta_old = c(0.5,-0.9),beta_new = c(0.50001,-0.90001),tol = 1e-5)
$error
     V1    V2
1 1e-05 1e-05

$status
[1] TRUE
stop_criterion(beta_old = c(0.5,-0.9),beta_new = c(0.5001,-0.90001),tol = 1e-5)
$error
     V1    V2
1 1e-04 1e-05

$status
[1] FALSE

berikut adalah nilai awal dari \(\boldsymbol{\beta}_{(p+1)}\), nilai toleransi, iterasi maksimum dan nilai dari \(m_i\). Khusus untuk \(m_i=1\) karena respon subscribed adalah respon distribusi bernouli.

beta_new <- rep(0,ncol(X))
names(beta_new) <- colnames(X)
beta_new
   (Intercept)        balance            age     housingyes maritalmarried 
             0              0              0              0              0 
 maritalsingle 
             0 
max_iter <- 1000
mi <- 1

tolerance <-  1e-15

Ingat Formula Fisher Scoring yang digunakan adalah sebagai berikut:

\[ \boldsymbol{\beta}_{(p+1) \times 1}^{(i+1)}=\boldsymbol{\beta}_{(p+1) \times 1}^{(i)} + \left[\boldsymbol{\mathcal{I}}_{p \times p }^{(i)} \right]^{-1} \boldsymbol{S}_{(p+1) \times 1}^{(i)} \]

for(i in 1:max_iter){
  
  #menyimpan beta lama
  beta_old <- beta_new
  
  mu_new <- mu(X = X,beta = beta_new)
  W_new <- W(m = mi,pi = mu_new)
  D_new <- D(pi = mu_new)
  
  I_inv <- chol2inv(chol( I_fs(X = X,W = W_new) ))
  
  #formulasi fisher scoring
  beta_new <- beta_new +I_inv %*% S(X=X,W = W_new,D = D_new,y =y ,mu = mu_new) 
  

  #menghitung stopping criterion
  stop_criterion_iter <- stop_criterion(
                 beta_old = beta_old,
                 beta_new = beta_new,
                 tol = tolerance)
  

  
  #iterasi berhenti jika sudah memenuhi stopping criterion
  if(stop_criterion_iter$status) break
}

Saat Convergent maka kita mendapatkan

\[ Var(\hat{\boldsymbol{\beta}}_{(p+1) \times 1})= \left[\boldsymbol{\mathcal{I}}_{p \times p } \right]^{-1} \] kemudian standard error dari \(\hat{\boldsymbol{\beta}}_{(p+1) \times 1}\) adalah akar dari diagonal utama \(\left[\boldsymbol{\mathcal{I}}_{p \times p } \right]^{-1}\).

result_fs <- list(iter_convergence=i,coefficients=as.numeric(beta_new),var_beta=I_inv)
result_fs$iter_convergence
[1] 31
result_fs$var_beta
6 x 6 Matrix of class "dpoMatrix"
                 (Intercept)       balance           age    housingyes
(Intercept)     2.743637e-01 -5.891964e-07 -4.050466e-03 -3.584211e-02
balance        -5.891964e-07  1.308069e-09 -3.003060e-08  6.255880e-07
age            -4.050466e-03 -3.003060e-08  8.377425e-05  3.146135e-04
housingyes     -3.584211e-02  6.255880e-07  3.146135e-04  3.568298e-02
maritalmarried -7.623728e-02 -2.022522e-07  2.006810e-04  5.139815e-03
maritalsingle  -1.230458e-01 -4.027429e-07  1.169965e-03  8.360438e-03
               maritalmarried maritalsingle
(Intercept)     -7.623728e-02 -1.230458e-01
balance         -2.022522e-07 -4.027429e-07
age              2.006810e-04  1.169965e-03
housingyes       5.139815e-03  8.360438e-03
maritalmarried   8.060487e-02  6.751034e-02
maritalsingle    6.751034e-02  1.072151e-01
summary_fs <- data.frame(variables=rownames(beta_new),
                         Estimate=round(result_fs$coefficients,10),
                         Std_Err=round(sqrt(diag(as.matrix(result_fs$var_beta))),10),row.names = NULL) %>% 
              mutate(z=Estimate / Std_Err, p_value=round(2*pnorm(q=abs(z),lower.tail = F),3))
summary_fs

IRLS

matriks \(\boldsymbol{z}\) adalah

\[ \boldsymbol{z}_{n \times 1}=\boldsymbol{X}_{ n \times (p+1) }\boldsymbol{\beta}_{((𝑝+1)Γ—1)} + (\boldsymbol{D}_{n \times n})^{-1} (\boldsymbol{y}_{n \times 1}βˆ’\boldsymbol{\mu}_{𝑛×1}) \]

kita tuliskan matriks \(\boldsymbol{z}\) dalam sintaks R

z <- function(X,beta,D,y,mu){
  inv_D <- chol2inv(chol(D))
 X %*% beta + inv_D %*%  (y-mu)
}

misalkan \(\boldsymbol{W}_{n \times n} ,\boldsymbol{\beta}_{((𝑝+1)Γ—1)},\boldsymbol{D}_{n \times n}\) dan \(\boldsymbol{\mu}_{n \times 1}\) adalah sebagai berikut:

set.seed(2045)

W_coba <- W(m = 1,pi = rep(0.5,nrow(X)))
dim(W_coba)
[1] 500 500
W_coba[1:5,1:5]
5 x 5 diagonal matrix of class "ddiMatrix"
     [,1] [,2] [,3] [,4] [,5]
[1,] 0.25    .    .    .    .
[2,]    . 0.25    .    .    .
[3,]    .    . 0.25    .    .
[4,]    .    .    . 0.25    .
[5,]    .    .    .    . 0.25
beta_coba <- c(0.230,0.001,0.002,-0.769,-0.166,0.109)
beta_coba
[1]  0.230  0.001  0.002 -0.769 -0.166  0.109
D_coba <- D(pi = rep(0.5,nrow(X)))
dim(mu_coba)
[1] 500   1
D_coba[1:5,1:5]
5 x 5 diagonal matrix of class "ddiMatrix"
     [,1] [,2] [,3] [,4] [,5]
[1,] 0.25    .    .    .    .
[2,]    . 0.25    .    .    .
[3,]    .    . 0.25    .    .
[4,]    .    .    . 0.25    .
[5,]    .    .    .    . 0.25
mu_coba <- as.matrix( runif(n = nrow(X),min = 0,max = 1 ) )
dim(mu_coba)
[1] 500   1
head(mu_coba)
           [,1]
[1,] 0.77550659
[2,] 0.94264755
[3,] 0.47241345
[4,] 0.08665263
[5,] 0.63646300
[6,] 0.42453500
z_coba <- z(X = X,beta = beta_coba,D = D_coba,y = y,mu = mu_coba)
dim(z_coba)
[1] 500   1
z_coba[1:10]
 [1] -3.1200264  2.2434098 -1.6766538 -0.8296105 -1.7598520 -1.7851400
 [7] -3.2987687 -1.1895575 -1.5743409  0.1808609

Supaya lebih mudah, kita kumpulkan semua definisi matriks yang sudah dituliskan ke program R dibawah ini

mu <- function(X,beta){
  exp(X %*% beta) / ( 1+exp( X%*% beta) )
}
W <- function(m,pi){
wi <- m * pi * ( 1- pi )
Diagonal(x=as.numeric(wi))
}
D <- function(pi){
di <- pi * ( 1- pi )
Diagonal(x=as.numeric(di))
}
z <- function(X,beta,D,y,mu){
  inv_D <- chol2inv(chol(D))
 X %*% beta + inv_D %*%  (y-mu)
}

Selanjutnya kita akan mulai menuliskan program R untuk iterasi IRLS

stop_criterion <- function(beta_old,beta_new,tol) {
  error <- as.matrix(abs(beta_new-beta_old))
  status <- all(error  < tol)
  return(list(error=as.data.frame(t(error)),status=status))
}
stop_criterion(beta_old = c(0.5,-0.9),beta_new = c(0.51,-0.91),tol = 1e-5)
$error
    V1   V2
1 0.01 0.01

$status
[1] FALSE
stop_criterion(beta_old = c(0.5,-0.9),beta_new = c(0.50001,-0.90001),tol = 1e-5)
$error
     V1    V2
1 1e-05 1e-05

$status
[1] TRUE
stop_criterion(beta_old = c(0.5,-0.9),beta_new = c(0.5001,-0.90001),tol = 1e-5)
$error
     V1    V2
1 1e-04 1e-05

$status
[1] FALSE

berikut adalah nilai awal dari \(\boldsymbol{\beta}_{(p+1)}\) nilai toleransi, iterasi maksimum dan nilai dari \(m_i\). Khusus untuk \(m_i=1\) karena respon subscribed adalah respon distribusi bernouli.

beta_new <- rep(0,ncol(X))
names(beta_new) <- colnames(X)
beta_new
   (Intercept)        balance            age     housingyes maritalmarried 
             0              0              0              0              0 
 maritalsingle 
             0 
max_iter <- 1000
mi <- 1

tolerance <-  1e-15

Ingat Formula IRLS yang digunakan adalah sebagai berikut:

\[ \boldsymbol{\beta}_{(p+1)Γ—1}^{(𝑖+1)} = \left\{ \boldsymbol{X}_{(𝑝+1) \times n }^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{X}_{n \times (𝑝+1)} \right\}^{-1} \boldsymbol{X}_{(𝑝+1) \times n}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{z}_{n \times1}^{(i)} \]

for(i in 1:max_iter){
  
  #menyimpan beta lama
  beta_old <- beta_new
  
  mu_new <- mu(X = X,beta = beta_new)
  W_new <- W(m = mi,pi = mu_new)
  D_new <- D(pi = mu_new)
  
  z_new <- z(X = X,beta = beta_new,D = D_new,y = y,mu = mu_new)
  inv_XWX <- chol2inv(chol(crossprod(X,W_new %*% X)))
  
  #formulasi fisher scoring
  beta_new <- inv_XWX %*% crossprod(X,W_new %*% z_new) 
  

  #menghitung stopping criterion
  stop_criterion_iter <- stop_criterion(
                 beta_old = beta_old,
                 beta_new = beta_new,
                 tol = tolerance)
  

  
  #iterasi berhenti jika sudah memenuhi stopping criterion
  if(stop_criterion_iter$status) break
}

Saat Convergent maka kita mendapatkan

\[ Var(\hat{\boldsymbol{\beta}}_{(p+1) \times 1})= \left\{ \boldsymbol{X}_{n \times (𝑝+1)}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{X}_{n \times (𝑝+1)} \right\}^{-1} \]

kemudian standard error dari \(\hat{\boldsymbol{\beta}}_{(p+1) \times 1}\) adalah akar dari diagonal utama \(\left\{ \boldsymbol{X}_{n \times (𝑝+1)}^{t} \boldsymbol{W}_{n \times n}^{(i)} \boldsymbol{X}_{n \times (𝑝+1)} \right\}^{-1}\).

result_irls <- list(iter_convergence=i,coefficients=as.numeric(beta_new),var_beta=inv_XWX)
result_irls$iter_convergence
[1] 33
result_irls$var_beta
6 x 6 Matrix of class "dpoMatrix"
                 (Intercept)       balance           age    housingyes
(Intercept)     2.743637e-01 -5.891964e-07 -4.050466e-03 -3.584211e-02
balance        -5.891964e-07  1.308069e-09 -3.003060e-08  6.255880e-07
age            -4.050466e-03 -3.003060e-08  8.377425e-05  3.146135e-04
housingyes     -3.584211e-02  6.255880e-07  3.146135e-04  3.568298e-02
maritalmarried -7.623728e-02 -2.022522e-07  2.006810e-04  5.139815e-03
maritalsingle  -1.230458e-01 -4.027429e-07  1.169965e-03  8.360438e-03
               maritalmarried maritalsingle
(Intercept)     -7.623728e-02 -1.230458e-01
balance         -2.022522e-07 -4.027429e-07
age              2.006810e-04  1.169965e-03
housingyes       5.139815e-03  8.360438e-03
maritalmarried   8.060487e-02  6.751034e-02
maritalsingle    6.751034e-02  1.072151e-01
summary_irls <- data.frame(variables=rownames(beta_new),
                         Estimate=round(result_irls$coefficients,10),
                         Std_Err=round(sqrt(diag(as.matrix(result_irls$var_beta))),10),row.names = NULL) %>% 
              mutate(z=Estimate / Std_Err, p_value=round(2*pnorm(q=abs(z),lower.tail = F),3))
summary_irls

Default fungsi R

mod1 <- glm(formula = subscribed~.,
            data = bank_marketing_mini,
            family = binomial(link = "logit"))
tidy(mod1) %>% 
  mutate(across(where(is.numeric),function(x) round(x,7)))